
JOURNAL OF COMPUTATIONAL PHYSICS 10, 503-533 (1972)

Automatic Optimization of Symbolic Algol Programs.

I. General Principles

M. PETRAVIC AND G. KUO-PETRAVIC

Department of Engineering Science, Oxford University, Parks Road, Oxford, England

AND

K. V. ROBERTS

Culham Laboratory, Abingdon, Berkshire, England

Received June 18, 1971

The symbolic style of programming referred to as Symbolic Algol I [l] appears to
have a number of advantages when applied to the solution ,of sets of nonlinear partial-
differential equations. Programs written in that style are clear, elegant, and concise and
their modular structure enables large parts of the programs to be used over and over
again for many different problems. Such programs, however, tend to be slow because
they involve a large number of nested procedure calls at execution time.

Finite-difference methods in several dimensions require in general that a relatively
small number of equations be solved a large number of times and much is gained if
these nested procedure calls are executed only once. This is achieved by a generator or
translator program, written in Algol, which processes input written in a related style
named Symbolic Algol II. Usually only finite-difference equations in very compact
symbolic form are input, while output is completely explicit and can be in a number of
computer languages. Of greatest interest are Assembler code modules automatically
produced in this way. They are competitive in speed with fully hand-optimized Fortran
versions and are produced effortlessly and error free, so that complex sets of equations
can readily be programmed or alterations made. For production runs these modules
can be incorporated,into a Fortran control program.

1. INTRODUCTION

This paper describes how Algol 60 can be used as a powerful macro-processor
which enables the symbolic expressions of classical vector analysis to generate
efficient target code automatically by the use of controlled side effects. The target
lanuages produced so far have been IBM 360 Assembler code, Fortran, Algol
and ICL KDF9 Usercode, but it appears that any language might be generated in

503
Copyright 0 1972 by Academic Press, Inc.
All rights of reproduction in any form reserved.

504 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

a similar way. The target code can be optimized by physical symmetry declarations;
for example if I’, = 0 (no rotation) and af/laz = 0 for all functions f (no z depend-
ence), then appropriate declarations can be used to suppress terms in which such
quantities occur as products. The method can be used for generalized orthogonal
curvilinear coordinates and an example will be given. Finally it would seem that the
method might be extended without difficulty to other kinds of symbolic formalism.

A previous paper [l] showed how Algol could be used for the symbolic solution

of problems in computational physics, especially those in which sets of partial-
differential equations are solved by finite-difference methods using a discrete mesh.
A vector equation such as

aB/at = curl(V x B) + qV2B (1)

can be programmed symbolically in the closely similar form

AB[Cl, Q] : = CURL(CROSS(V, B)) + ETA x DELSQ(B); (2)

a style of programming which has been termed [I] Symbolic Algol I. Here the
left side of (2) is an array element representing the magnetic field B in the Cl-
direction, (Cl = I,2 or 3) at the mesh point Q, while most of the identifiers on the
right side are symbolic operators or functions which are closely analogous to their
counterparts in Eq. (1) and are represented by real procedures. Details of the choice
of coordinate system, the number of dimensions, the boundary conditions, and
the difference scheme are excluded from Eq. (2) and are dealt with at a lower
level just as in the familiar symbolic notations of mathematical physics.

Symbolic Algol I(SA/I) enables complex problems to be coded in a concise
form which is virtually system independent and should be readily intelligible
to physicists because it is close to the mathematical language which they normally
use. By way of example, Table I shows the partial-differential equations which
are used in the 3D magnetohydrodynamic TRINITY code [l], while Table II

TABLE I

3D MHD Equations Used in the TRINITY Code

Continuity equation ap/at = -v .p~
Momentum equation a(puiyat = - ajax,(pij) + vv2p~i
Magnetic equation aBlat = v x (V x B) + +ZB

Temperature equation aTjar = -V . (TV) + (2 - y) TV ’ v + KPT
+(Y - lW/p + (Y - 1) 4P x 3” + P . $7

Pressure Pi9 = pT&, + pvivj + (B2/2)S,, - B,B,

Current j=VxB

OPTIMIZATION OF SYMBOLIC ALGOL 505

TABLE II

3D MHD Equations Programmed in Symbolic Algol I

procedure INVOKE DIFFERENCE EQUATIONS;

hegin

CONTINUITY EQUATION: DT: = 2 x DELTA T; Cl: = C2: = 1;
Q: = 1 + I + 1 + (J + 1) x PI + (K + 1) x PI x PJ;
NEW RHO: = RHO - DT x DIV(RH0 x V);
MOMENTUM EQUATION: DT: = 2 x DELTA T/(1 + NU/EPS);

for Cl: = 1, 2, 3 do
AV[CI, Q]: = (RHO x V + DT x (-DIV 2(P) + NU x DELSQ(RH0 x V)))/NEW

RHO;
ARHO[Q]: = NEW RHO;

MAGNETIC EQUATION: DT: = 2 x DELTA T/(1 + ETA/EPS);
for Cl: = 1, 2, 3 do

AB[CI, Q]: = B + DT x (CURL(CROSS(V, B)) + ETA x DELSQ(B));

TEMPERATURE EQUATION: DT: = 2 x DELTA T/(1 + KAPPA/EPS); Cl: = 1;
ATEM[QJ: = TEM + DT x (-DIV(TEM x V) + KAPPA x DELSQ(TEM)

+ (2 - GAMMA) x SAV(TEM) x DIV(V) + (GAMMA - 1) x (ETA x
SQM(CURL(B))/SAV(RHO) + NU x (SQM(CURL(V)) + DIV(V) t 2)));

end;
real procedure P;
P:=ifCI=C2then(RHOx(TEM+VxV)+0.5xDOT(B,B)-BxB)eIse
(RHO x V x V2 - B x B2);

Note. The differences in the treatment ofp and j between Tables I, II, and III are not essential.

shows the same equations programmed in SA/I. The differences are fairly minor
and are partly due to the restricted class of symbols currently available on computer
input devices such as the teletype or card punch.

The advantages of symbolic notation are clear enough. The Algol procedure
operators are neat and concise and have the same formal properties as their
mathematical counterparts, so that the manipulation of statements and the
construction of new expressions are quick, intelligible, and easy to check for errors.
A typical example is the operator CURL, represented in a Cartesian coordinate
system by the short procedure

real procedure CURL(A);

real A; CURL := RP(DEL(RP(A))) - RM(DEL(RM(A))); (3)

5wo/3-9

506 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

Here RP and RM are rotation operators which rotate the 1,2, 3-components of
vectors or tensors in either the positive (RP) or negative (RM) directions (Fig. l),
while DEL is a finite-difference operator. These rotation operators are reciprocal
to one another so that

RP(RM(A)) = RM(RP(A)) = A, (4)

while the property

RP(RP(A)) = RM(A) (5)

is also often used in 3 dimensions. The use of vector and tensor operators ensures
that statements are independent of the coordinate system (covariant), the compo-
nents being hidden and appearing only at execution time.

FIG. 1. Positive and negative rotation operators. The operators RP, RM rotate vector com-
ponents cyclically in the positive and negative directions, respectively, and satisfy the symbolic
relations R+8 = RwS = R+R_ = R-R, = 1, from which R+2 = R- , etc. (Here R, = RP, R-
I RM.)

All these properties combined with modularity and portability of programs [2]
make SA/I a powerful tool for the quick and error-free development of large and
complex physics or engineering programs. However, SA/I executes quite slowly
because of the great number of nested procedure calls and is therefore not too
useful for 2D and 3D production runs although this depends on how well the
Algol 60 compiler has been written. Its main application to date lies in the testing
of prototype programs on a coarse mesh over a few timesteps. In this way standard
test results are obtained for comparison with future better-optimized and faster
versions of the same program, written for example in ordinary Algol, Fortran,
or Assembler code [l].

The aim of the present paper is to carry the theory of Symbolic Algol one stage
further. We shall show that by a further slight transformation of a vector expression
such as Eq. (2) it can be made to generate optimized code automatically. In this

OPTIMIZATION OF SYMBOLIC ALGOL 507

new style of programming, which is termed Symbolic Algol II (SA/II), Eq. (2) in
fact becomes

EQUATE(B, SUM(B, MULT(DT, SUM(CURL(CROSS(V, B),

MULT(ETA, DELSQ(B)))))); (6)

and the statements of Table II are replaced by those of Table III. The reason for
this transformation is to replace the arithmetic operators +, -, x , /, : = which
occupy a privileged position in high-level languages by their generalized counter-
parts SUM, DIFF, MULT, QUOT which are real procedures, and EQUATE

TABLE III

3D MHD Equations Programmed in Symbolic Algol II

CONTINUITY EQUATION’:

EQUATE (NEWRHO, DIFF(RH0, MULT(DT(l), DIV(MULT(RH0, V)))));

MOMENTUM EQUATION:

forC1: = 1,2,3do

EQUATE(V, QUOT(SUM(MULT(RH0, V), MULT(DT(2), DIFF(SUM(DIV

(DIFF(TEN(B, B), MULT(RHO(TEN(V, V)))), MULT(NU, DELSQ(MULT(RH0, V)))),

GRAD(SUM(MULT(RH0, TEM), MULT(RNUM(O.$ DOT(B, B))))))), NEWRHO));

MAGNETIC EQUATION:

forC1: = 1,2,3do

EQUATE(B, SUM(B, MULT(DT(3), SUM(CURL(CROSS(V, B)), MULT(ETA,DELSQ(B))))));

TEMPERATURE EQUATION:

EQUATE(TEM, SUM(TEM, MULT(DT(4), SUM(DIFF(SUM(MULT(MULT(DIFF

(RNUM(2.0), GAMMA), SAV(TEM)), DIV(V)),MULT(KAPPA,DELSQ(TEM))),DIV(MULT

(TEM, V))), SUM(QUOT(MULT(DIFF(GAMMA, RNUM (LO)), MULT(ETA, SQUARE

(CURL(B)))), SAV(RHO)), MULT@IFF(GAMMA, RNUM (LO)), MULT (NU, SUM

(SQUARE (CWW% EXP (DWV), INUMt2))))))))));

Note. Equations (1.5) and (1.6) have been incorporated into the main equations although they
can be defmed separately. The 4 calls of the procedure DT take into account the Dufort-Frankel
factors [l].

which is a procedure. Once this has been done these procedures can, of course, be
given any interpretation that we choose, and they can in particular be made to
generate optimized code in any desired programming language by means of side
effects as explained in Section 2.

The languages generated so far have been IBM 360 Assembler code, optimized

508 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

Algol and Fortran, and ICL KDF9 Usercode which is similar to Reverse Polish
and therefore has a theoretical as well as a practical interest. The transformations
from Table I and Table II to Table III obey prescribed rules and we have in fact
carried them out automatically by two separate methods. One method uses the
STAGE 2 Macro-Processor [3,4], and the other uses Algol60 as a string processor
and syntax analyzer [5]. In practice these transformations are not difficult to perform
by hand.

An SA/II generator program looks very like the corresponding SA/I calculational
program except that some of the auxiliary statements must also be changed from
form (2) to form (6), so that, for example, CURL becomes

real procedure CURL(X);

real (X); CURL := DIFF(RP(DEL(RP(X))), RM(DEL(RM(X)))); (7)

The purpose of (7) is however rather different from that of (3) because instead of
actually calculating numerical values directly, the program now works out which
programming instructions are needed to calculate these values and then generates
the instructions, either printing them or punching them out on cards or placing
them in a file for subsequent execution. Clearly there is a close correspondence
between the two processes of calculation and code generation-for example, in
both SA/I and SA/II the storage locations are evaluated by manipulating symbolic
operators-and so CURL, DEL and other operators appear virtually unaltered.
The automatically generated modules can be incorporated into control programs
which are written in Fortran, Algal, or any other convenient language, as discussed
in Section 6.

An SA/II generator program is not a compiler, and it is shorter, more flexible,
and easier to write than most compilers. We shall endeavor to explain the relation
in Section 6. Since it is coded in Algol and has at least as many nested procedure
calls as SA/I it may also not be as fast as some compilers. However, the point is
that each statement in Table III is executed only once, instead of many millions
of times as in a normal run. Code generation from Table III actually occupies
about 10 set on the IBM 360/91, which is comparable with ordinary job overheads
and much less than the duration of a typical production run which may last for
several minutes or even hours. The only real requirement is that the generated
Assembler code should be efficient, and it turns out in practice to be slightly more
efficient than the corresponding Fortran written by a good programmer and
compiled with the IBM Fortran H Option 2 Compiler.

The basic idea of SA/I is quite straightforward and will be explained in Section 2,
namely, that side effects of typed procedures can be used to generate code. Some
complications arise in a practical program because it is desirable to make the
generated code as efficient as possible. As we have already mentioned, it should be

OPTIMIZATION OF SYMBOLIC ALGOL 509

possible in a problem in which V, = 0 or af/az = 0 to declare these symmetry
conditions to the generator program and to have it automatically eliminate all
terms which are then known to be identically zero. This can be achieved by making
use of the fact that the real procedures in a statement such as (6) pass numerical
values to one another. The simplest version of SA/II outlined in Section 2 treats
these values as dummies, but they can be employed for a variety of purposes
including optimization. A zero value is assigned to basic terms or products which
are known to be identically zero in the physical problem, and this value is used to
control the way in which the code is generated. Unnecessary brackets and signs are
eliminated in a similar fashion.

Code generation is carried out by a real procedure TRIPOP (triple operator),
and operators such as SUM, DIFF, MULT QUOT simply call TRIPOP to generate
the appropriate output. Although TRIPOP is quite short its working is fairly
complex, and to avoid burdening the present discussion it will be described in detail
elsewhere [6]. A brief account is, however, given in Section 3.

Since Algol is likely to be useful for other types of symbolic manipulation it
may be appropriate, after some examples have been given, to list those features of
the language that we have found to be important, and this is done in Section 8.
It will, however, become evident almost from the beginning that recursion and
call-by-name play a significant part, together with a number of other facilities which
are not available in a language such as Fortran. A more practical point is that
although Algol allows identifiers to have arbitrary length, some compilers (including
that of the IBM 360) distinguish only the first six characters. To make the discussion
of this paper clearer we have in some cases used long English-language identifiers,
but in the published version of the program itself [7] the identifiers are restricted
to six characters or less to avoid possible clashes.

2. CODE GENERATION

The generation of code by an expression such as

SUM(X, MULT(Y, Z)) 63)

is simple to explain. We tist need a procedure PRINT((string)) which will output
an arbitrary string of characters, taking into account any special requirements to
leave gaps at the beginning and end of the line. In terms of this we define the
algebraic symbols

procedure PLUS; PRINT(‘+‘);

procedure STAR; PRINT(‘*‘);
(9)

510 PETRAVIC, KUO-PETRAVIC, ANP ROBERTS

and the symbols to be used as identifiers in the generated code

real procedure X; begin PRINT(‘X’); X : = 1; end;

real procedure Y; begin PRINT(‘Y’); Y := 1; end;

real procedure Z; begin PRINT(‘Z’); Z := 1; end;
(10)

Finally, there are two arithmetic operators

real procedure MULT(A, B); real (A, B);

begin real CALL; CALL : = A; STAR; CALL := B; MULT := 1; end; (11)

and

real procedure SUM(A, B); real(A, B);

begin reai CALL; CALL : = A; PLUS; CALL : = B; SUM : = 1; end; (12)

Explanation

Exactly what happens is illustrated by the tree shown in Fig. 2. When the
statement ‘CALL := A’ is encountered, the real procedure X is invoked by name
from SUM, causing a symbol ‘X’ to be generated. The local variable CALL in

PRINT

FIG. 2.

i f i
‘Y’ ‘*’ ” 2

Generation of code by the expression SUM(X, MULT(Y, a.

SUM is set equal to 1 but this value is disregarded. A ‘ + ’ symbol is next produced.
Finally, MULT is entered by ‘CALL := B’ which generates the symbols ‘Y’, ‘*‘,
‘Z’ in the same way so that we get

as required.

x+y*z (13)

Several points may be noticed:

(a) Typed procedures are used to generate the code.

OPTIMIZATION OF SYMBOLIC ALGOL 511

(b) The actual generation takes place by means of side effects; the statement

CALL := A;

causes the string of symbols associated with the formal parameter A to be con-
structed, however complex an expression A mqy represent.

(c) A precise order is forced on these side effects, independently of the order
in which the Algol compiler writer may choose to evaluate the terms in an arith-
metic expression such as P + Q or P x Q.

(d) It is immaterial whether real or integer procedures are used, but we have
chosen real procedures for compatibility with SA/I.

(e) At this stage the values associated with the real procedures have no
significance; only the side effects are important. In Section 3 we shall however
indicate how a suitably chosen assignment of values can be used to remove
expressions which are known to be identically zero.

Generation of Indices

The variable indices defining a particular component of a vector variable, and
the mesh point at which it is to be evaluated, are specified by global variables whose
values are controlled by the cyclic rotation operators RP(X), RM(X) and the
displacement operators EP(X), EM(X). The action of these operators relies on
the Algol “call by name” facility [S, 91. In the example

real procedure RP(X); real X;

begin Cl := CP[Cl]; RP := X; Cl := CM[Cl]; end;

the procedure X is made to use the value of Cl defined within the procedure RP,
because it is evaluated at the time the statement RP := X; is executed and not at
the time of the call to RP, as would be the case if the “call by value” alternative
were used.

Generation of Reverse Polish

The reader might be excused for wondering what exactly has been achieved so
far: starting from the algebraic expression (13) we have converted it automatically
or by hand into theI SA/II form (88), and then proved that this is capable of
reproducing the original expression. The real advantages are first, that the generated
code can represent a considerable expansion of the original which may be in
symbolic vector or tensor form, and second, that by making small changes in the
basic procedures such as PLUS, STAR, X, Y, Z, MULT, SUM we can generate
the code in a lower-level and therefore more-efficient language.

512 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

To illustrate this second point we show how to convert (8) into the Reverse
Polish form

x, y, z, *, +, (14)

which is in l-l correspondence with the Assembler Language (or “Usercode”) of
the ICL KDF9 on which Symbolic Algol was first developed. To do this we simply
modify the five procedures (9) and (10) in order to add an extra comma, e.g.,

procedure PLUS; PRINT((‘+,‘); (15)

and then reverse the order of the second and third statements in the arithmetic
operators (11) and (12), e.g.,

CALL := A; CALL := B; STAR; MULT := 1;

which then enables (8) to generate (14).

(16)

Brackets

The question of brackets has not so far been taken into account in generating
algebraic expressions such as (13). Thus at present

x x (Y + Z) (17)
would be converted by

MULT(X, SUM(Y, Z)) (18)

into
X*Y+Z, (19

which is wrong, although the corresponding Reverse Polish string is still correct:

x y, z, +, *, (20)

The simplest way of correcting this is to enclose the output from each arithmetic
operator in a pair of brackets by means of two procedures OPENB, CLOSEB,
so that, for example, (12) becomes

real procedure SUM(A, B); real(A, B);

begin real CALL; OPENB; CALL := A; PLUS;
CALL := B; SUM := 1; CLOSEB; end;

Then expressions (8) and (18) generate the correct output

m + gc * ZN

W)

(22)

OPTIMIZATION OF SYMBOLIC ALGOL 513

and

respectively.
(X * (Y + m (23)

A complicated expression will now produce a large number of unnecessary pairs
of brackets but although these make the expression difficult for a human to under-
stand they should not trouble a Fortran or Algol compiler; in fact they might well
shorten the compilation time since questions of operator precedence need no longer
be resolved. However, in order to make the generated code more elegant and
intelligible we have implemented a method for removing the unnecessary bracket
pairs and this will be described in Ref. [6].

Another difficulty which occurs with the KDF9 is that the nesting store or
arithmetic stack has finite depth (in practice about 13), so that a sufficiently long
string of identifiers unrelieved by operators could cause it to overflow. To monitor
this situation (which has not yet occurred in the problems that we have treated)
one can introduce a level counter and print out a warning to the user when overflow
is detected. In most cases he can then permute the order in the SA/II expression to
produce a better pattern. For example

instead of (8) leads to

SUM(MULT(Y, Z), X) (24)

y, z, *, x, +, (25)

which requires a smaller stack. Overflow is more likely to occur with the IBM 360
which has only 4 floating-point registers, and here we perform automatic dumping
and restoring of registers when necessary as explained in Ref. [6].

3. PROCESSING THE EQUATIONS

The central procedure of the SA/II generator program is EQUATE, which for
Algol output is

procedure EQUATE(X, Y): real X, Y;
begin real CALL;

NEXTLINE; PRINT := false;
if X = 0 then go to EXIT;
PRINT := true; SIGN := 0;
CALL := X; ASSIGN;
if Y = 0 then TEXT (1, ‘0’);
SEMICOLON;

EXIT:
end;

(26)

514 PETRAVIC, KUO-PETRAVIC, AND RbBERTS

A similar version is used for any other target code but the explanation is simpler
for this particular example and may give some idea of the power of the symbolic
method. ASSIGN generates the assignment symbol, ‘= .’ for the IBM 360.

Suppose that (26) is called by the statement

EQUATE(B, SUM(B, MULT(DT, CURL(CROSS(V, B))))); (27)

as in Table III but without the resistive diffusion term. Because this is a vector
equation it will be called 3 times with Cl = 1,2, 3 and we shall suppose that B,
has been declared identically zero. The tree of real procedure calls is indicated in
Fig. 3.

EQUATE

FIG. 3. Procedure tree for the magnetic equation (27). Each arithmetic operator indicated
by * calls the TRIPOP operator recursively to control the optimization process. Branches broken
off with // are similar to the full branch shown on the diagram. Terminal symbols V, B, DT,
R2DS generate the code, while RP, RM manipulate the global component variable Cl, and EP,
EM manipulate the mesh location.

The auxiliary call to NEXTLINE does shy editing that is required, e.g., ruling
a line across the output page, and printing is then’ switched off. The left side X
of the expression, in this case B, , B, or B, , is next tested to see if it is identically
zero, which as explained in Section 1 will be represented by a zero value. If so,

OPTIMIZATION OF SYMBOLIC ALGOL 515

there is no point in generating anything and the right side is skipped. (Cl = 3).
Note that since X is a real procedure the statement if X = 0 then . . . involves further
operations at a lower 1evel.l

Assuming that the component is not identically zero we switch printing on again,
make sure that no + sign will be printed, and reference X once more, subsequently
calling the procedure ASSIGN. This series of actions will generate some expanded
form such as

BlUQ/).= (28)

depending on the hardware representation and on the way in which array compo-
nents are being referenced. Note that the numerical value in (28) is that of the formal
parameter V.

The whole of the testing and generation of the right side is now contained in the
deceptively simple statement

if Y = 0 then TEXT(1, ‘0’);

Some possible cases for the right side Y are

(29)

a. Constant. Since printing is now switched on the numerical representation
of the constant is generated.

b. Nonsubscripted variable. The character string corresponding to this
variable is generated.

c. Array variable. If this variable has been declared to be identically zero
it will not be printed and the value 0 will be returned, causing the second part of
the if statement to print ‘0’. If it is not identically zero it will print its own character
representation, including any necessary vector or tensor components.

d. Arithmetic expression. The outermost arithmetic operator calls TRIPOP
which switches off the printing and tests the whole of the expression, TRIPOP
being called again recursively by each of the internal arithmetic operators, including
those in CURL and CROSS. If it is finally determined to be identically zero then
‘0’ is printed. Otherwise this outermost TRIPOP initiates a second scan which
prints all those subexpressions which were found to be not identically zero the
first time they were tested.

As an example, Table IV shows Algol 60 target code generated for the IBM 360
for Maxwell’s two equations

aE/at = curl H, aH/Ct = -curl E,

1 Since X is real it is perhaps not good practice to test whether or not it is exactly zero but we
have found no difficulty on the ICL KDF9 or IBM 360. The procedure values are always set to
integers or sums or differences of small integers and it is hard to see why trouble should arise
with any computer. If it does, one can simply test for X < E where 0 < E < 1.

516 PETRAVIC, IWO-PETRAVIC, AND ROBERTS

TABLE 1V

Maxwell’s Equations in 3D Orthogonal Curvilinear Coordinates Generated
in IBM 360 Algal”

‘COMMENT’---- ____ --------- ________________;

HFILDl(/Q/). = HFILDl(/Q/) - DCT7 * ((EFILD3(/Q + 141) * H3(/ + 2/) - EFILD3(/Q-1

41) * H3(/ - 20) * R2DQ2 - (EFILDZ(/Q + 140/) * H2(/ + 31) - EFILDZ(/Q - 140/) *
H2(/ - 3/)) * R2DQ3) * RHPHMl;

‘COMMENT’---------------------------------;

HFILD2(/Q/). = HFILD2(/Q/) - DCT7 * ((EFILDl(/Q + 140/) * Hl(/ + 3/)-EFILDl(/Q-14
Oi) * Hl(/ - 31)) * R2DQ3 - (EFILD3(/Q + l/) * H3(/ + l/) - EFILD3(/Q - I/) *
H2(/ - l/)) * R2DQl) * RHPHMZ;

‘COMMENT---------------------------------;

HFILD3(/Q/). = HFILD3(/Q/) - DCT7 * ((EFILD2(/Q + l/) * H2(/ + l/) - EFILDZ(/Q -

li) * H2(/ - l/)) * R2DQl - (EFILDl(/Q + 14/) * Hl(/ + 2/) - EFILDl(/Q - 14j) *
Hl(/ - 2/)) * R2DQ2) * RHPHM3;

‘COMMENT---------------------------------;

EFILDl(/Q/). = EFILDl(/Q/) + DCTS * ((HFILD3(/Q + 141) * H3(/ + 2/) - HFILD3(/Q-1

4/) * H3(/ - 20) * R2DQ2 - (HFILD2(/Q + 1401) * H2(/ + 3/) - HFILD2(/Q - 140)/ *
H2(/ - 3/)) * R2DQ3) * RHPHMI:

‘COMMENT’---------------------------------;

EFILD2(/Q/). = EFILDZ(/Q/) + DCT8 * ((HFILDl(/Q + 1401) * Hl(/ + 3/) - HFILDl(/Q-14

O/) * Hl(/ - 31)) * R2DQ3 - (HFILD3(/Q + l/) * H3(/ + l/) - HFILD3(/Q - l/) *
H3(/ - l/)) * RZDQl) * RHPHMZ;

‘COMMENT’---------------------------------;

EFILD3(/Q/). = EFILD3(/Q/) + DCT8 * ((HFILDZ(/Q + l/) * H2(/ + 10 - HFILD2(/Q -
l/) * H2(/ - l/)) * R2DQl - (HFILDl(/Q + 141) * Hl(/ + 2/) - HFILDl(/Q - 14/) *

Hl(/ - 2/)) * R2DQ2) * RHPHM3;

a In this example, PI = 14 and PJ = 10, hence the displacements in the 1, 2, 3 directions are
(1, -1), (14, -14) and (14 x 10, -14 x lo), respectively.

in orthogonal curvilinear coordinates using a mesh of size (14 x 10 x 42). The
source statements were

for Cl = 1, 2, 3 do
EQUATE(EFIELD, SUM(EFIELD, MULT(DCT(8), CURL(HFIELD))));

for Cl = 1,2,3 do
EQUATE(HFIELD, DIFF(HFIELD, MULT(DCT(7), CURL(EFIELD))));

(30)

OPTIMIZATION OF SYMBOLIC ALGOL 517

In this case no symmetry conditions were imposed. DCT7 and DCT8 are time-step
factors which will usually be the same.

4. PHYSICAL CONSTANTS AND VARIABLES

Provision is made for handling nonsubscripted variables which may be constants
or functions only of the time, and scalar, vector, and tensor functions. A typical
“declaration” specified by the user is, for example,

real procedure B; B : = VECTOR(5, 1, ‘B’, 1, 1,O); (31)

This calls the real procedure VECTOR which in the Algol60 output version reads

real procedure VECTOR(ORDINAL NUMBER, LENGTH, S, Vl, V2, V3);
integer ORDINAL NUMBER, LENGTH, VI, V2, V3; string S;
begin

VECTOR := if Cl = 1 then Vl else if Cl = 2 then V2 else V3;
if not PRINT then go to EXIT;
SIGN IT; TEXT(LENGTH, S);
COMPONENT; SHIFT;

EXIT:

end; (32)

The parameter ORDINAL NUMBER is not being used here; it controls the actual
storage region used by B which is important in some Assembler Language versions
and is retained for consistency. LENGTH gives the length of the identifier string
‘B’ which will be used in target statements, instructions, and comments, in this
case 1. The last 3 parameters VI, V2, V3 define whether or not the x, y, z compo-
nents are identically zero. In this case the user has specified V3 = 0 so that B, is
taken to be identically zero. Because VECTOR returns the value 0 whenever
Cl = 3, the z component of the magnetic equation will be suppressed altogether
(Section 8), and all terms in which B, occurs as a product will be suppressed on the
right side of any other equation. Otherwise when PRINT = true the procedure
VECTOR will proceed as follows:

SIGN IT Examine the value of a global variable SIGN and
output either a preliminary ‘+‘, ‘-‘, or no sign.

TEXT(LENGTH, S) Output the string S of length LENGTH, in our
example ‘B’.

518 PETRAVIC, KUO:PETRAVIC, AND ROBERTS

COMPONENT

SHIFT

Output the current value of the component Cl, e.g., ‘2’.

Output ‘[’ or ‘(/’ followed by the signed numerical
value of the current displacement from the local mesh
origin, and finally a closing bracket, ‘I’ or ‘/)‘.

Typical output for Algol on the IBM 360 is

+WQ + 730 (33)

and similarly for Fortran except for the absence of the slashes. Several other
versions have been developed; for example,, the displacements can be handled
symbolically so that the code does not have to be regenerated when the mesh
size is changed or one might generate ‘BY’ instead of ‘B2’ for clarity.

The operators RP, RM act on the global variable Cl as determined by algebraic
and analytic operators such as DOT, CROSS, DIV, CURL and therefore enable
the correct component label to be calculated. Similarly, vector translation operators
EP, EM which are called whenever a space derivative occurs are used to calculate
the position on the lattice relative to the central point Q of the local mesh ‘molecule’.
In Eq. (33) this appears as a numerical displacement of 73 words within the
region of core store occupied by the array B2.

A scalar is handled in a precisely similar way by the real procedure SCALAR
which requires only a single value 0 or 1 and does not need to call COMPONENT,
and correspondingly for constants on the one hand, and tensors on the other.

Adressing of Variables

We have already mentioned that the generated code can be in any chosen com-
puter language. Whatever the language, however, we obviously have to be able to
print some form of address at which the value of a particular variable defined on
a specific mesh point is stored. The addressing can be completely symbolic, e.g.,
in Algol via an array

B[CI, Q + DX - DY], (34)

it can be coded numerically as in KDF9 Usercode

V34P6M 15 (35)

(location 34 of variable block 6 modified by register 15), or it can be partly
numerical and partly symbolic as in IBM 360 assembly code.

0052(,DISPQ) BY(I,J- 1 ,K)
(36)

03 12(PLUSDZ,DISPQ) BZ(I,J,K+ 1)’

OPTIMIZATION OF SYMBOLIC ALGOL 519

Here the displacement in bytes defines both the variable and the position in the
xy plane relative to the centre of the molecule, DISPQ is a general register which
contains the current center, while PLUSDZ is a register which shifts one mesh unit
in the z direction. The comments on the right side give the Fortran notation. A
fuller example of IBM 360Assembly code produced in this way is shown in Table V.
Several other choices are possible. In any case the address will depend on the
variable in question, on the coordinate direction on to which a vector variable is
being projected, and on the mesh point at which the expression should be evaluated.
These 3 quantities are defined in all the Symbolic Algol programs [1] by the variable
name and by the global integer variables Cl and Q.

Finite-DifSerence Mesh Used for TRINITY

The mesh is assumed to be Cartesian, of up to 3 dimensions, and equispaced.
The numbers of mesh points in the x, y, and z directions are denoted by PI, PJ and
and PK, respectively, so that the total number of mesh points is

SIZE = PI x PJ x PK.

This includes six guard planes introduced to enable the same difference expressions
to be used on the physical boundaries of the volume as inside it. The mesh points
are counted in the x direction, starting along the intersection of the first y- and
the first z-plane numbered by integers Z, J, and K. The numerical relation is

Q = I + (J - 1) x PI + (K - 1) x PI x PJ. (37)

For output in Algol or Fortran we choose separate arrays for each vector compo-
nent in which the values are packed with increasing number Q. All the arrays are
then of the same size equal to PI x PJ x PK and are functions only of one index Q.

This way of mapping the 3-dimensional mesh onto l-dimensional arrays implies
that two mesh points which are adjacent in the y direction correspond to array
elements PI storage locations apart, and that if the points are adjacent in the
z direction the corresponding elements will be PI x PJ locations apart. The single
mesh index changes by DELTA = PI x PJ if the shift is in the z direction. It
is the vector-displacement operators EP and EM that cause, on a single application,
a shift by one mesh point in the direction determined by the current value of Cl.
The number of shifts in the x, y, and z directions is denoted in the program by
the global integers Kl, K2, and K3 from which, knowing PI and PJ, the corre-
sponding change in Q can be calculated.

It is sometimes desirable to interleave the variable arrays so that the variable
values at one mesh point Q are stored sequentially in the memory, e.g., in the order

RHO, Vl, V2, V3, Bl, B2, B3, TEM (38)

520 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

TABLE V

IBM 360 Assembly Code Generated for the
Second Component of the Magnetic Equation

The code is efficient, with no extra address-manipulation instructions. Out of the 48 instructions,
4 are concerned with stack overflow. Note that comments are also generated automatically.

Operation
code Location Variable Level

*

LE

LE

LE

ME

LE

ME

SER

LE

ME

SER

LE

ME

AER

ME

LE

ME

STE

LE

ME

SER

LE

ME

SER

LE

ME

AER

ME

SER

0,0308(, DISPQ)

2, CONSTANT + 008

4,0296(PLUSDZ, DISPQ)

4,0312(PLUSDZ, DISPQ)

6,03C@@‘LUSDZ, DISPQ)

6,0308(PLUSDZ, DISPQ)

4,6

6,0296(MINSDZ, DISPQ)

6,03 12(MINSDZ, DISPQ)

496

6,03OO(MINSDZ, DISPQ)

6,0308(MINSDZ, DISPQ)

496

4, CONSTANT + 016

6,0324(, DISPQ)

6,0340(, DISPQ)

0, STORAGE + 000

0,032s

0,0336 (, DISPQ)

690
0,0260(, DISPQ)

0,0276(, DISPQ)

6 0

0,0264(, DISPQ)

0,0272(, DISPQ)

60
6, CONSTANT + 016

4,6

B2+0+0

DT

v2+0+0

B3+0+0

v3+0+0

B2+0+0

v2+0+0

B3+0+0

v3+0+0

B2+0+0

RECDS2

v1+1+0

B2+1+0

v2+1+0

Bl+l+O

Vl-1+0

B2-110

v2-1+0

Bl-l+O

RECDS2

00 001

01 002

02 003

03 004

03 005

04 006

04 007

03 008

04 009

04 010

03 011

04 012

04 013

03 014

03 015

04 016

04 017

05 018

05 019

05 020

04 021

05 022

05 023

04 024

05 025

05 026

04 027

04 028

03 029

OPTIMIZATION OF SYMBOLIC ALGOL 521

TABLE V (continued)

Operation
code

LE

LE

AE

AE

AE

AE

AE

STE

LE

ME

SER

MER

ME

AER

LE

MER

LE

AER

STE

Location

6, CONSTANT + 004

0,0X4(, DISPQ)

0,0052(, DISPQ)

0,0308(PLUSDZ, DISPQ)

0,0308(MINSDZ, DISPQ)

0,0340(, DISPQ)

0,0276(, DISPQ)

2, STORAGE + 004

2, = E’ + 6.0000’ + 00

2,0308(, DISPQ)

032

690
6, CONSTANT + 020

436

2, STORAGE + 004

294

0, STORAGE + 000

092

0,0308(, DISPQ)

Variable Level

ETA

B2+0+1

B2+0-1

B2+0+0

B2+0+0

B2+1+0

B2-110

B2+0+0

REDSSQ

B2+0+0

04 030

05 031

05 032

05 033

05 034

05 035

05 036

06 037

06 038

06 039

05 040

04 041

04 042

03 043

02 044

02 045

01 046

01 047

01 048

followed by the same sequence for the next mesh point (Q + 1) and so on. Adjacent
values of the same variable are then (say) 32 bytes apart. This enables physical data
planes to be transferred readily to and from the backing store as a single block,
and can be done either in Assembler code or, in Fortran, by the use of
EQUIVALENCE statements. In all cases the SA/II program can readily be adapted
to calculate the correct word or byte position in the store.

A similar situation exists when the core store is too small to hold the complete
set of physical data. The largest size of mesh on which TRINITY has been run
has 60 x 80 x 48 points and requires two IBM 2301 drums to accommodate the
7 Mbytes of data. All the calculation then takes place within three sectors of a
rotating quadruple buffer, the fourth sector being used to transfer data to and from
the core store in parallel with the calculation. The SHIFT procedure has been
adapted so that it always refers to the correct areas of buffer storage.

581/10/3-10

522 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

5. ORTHOGONAL CURVILINEAR COORDINATES

Symbolic vector algebra and analysis on a Cartesian lattice in SA/I have been
described elsewhere [l] and few changes are required for SA/II. It may, however,
be of interest to demonstrate how the method has been extended to generalized
orthogonal curvilinear coordinates, with spherical polar coordinates as a special
case.

The generalized definitions for divergence and curl can conveniently be written
as

div A = & c +, (hi+&Ai),
z a

ai a(hi-Ai-)
cur1 A = c -jq&=

3(hi+Ai+)

z &Ii+ aqi- ’

where (a,, a,, a3) are unit vectors, h = (h, , h, , h3) are scale factors, and
+, - denote positive and negative cyclic rotation, respectively.

These are translated into SA/II as

real procedure DIV(A); real A;

DIV := MULT(DOT(DEL(MULT(A, HPHM)), R2DQ), RHlH2H3); (41)

real procedure CURL(A); real A;

CURL := MULT(DIFF(RP(MULT(DEL(RP(MULT(A, H))), R2DQ)),

RM(MULT(DEL(RM(MULT(A, H))), R2DQ))), RHPHM); (42)

where

real procedure DEL(X); real X; DEL := DIFF(EP(X), EM(X));

This leaves to be defined the real procedures

(43)

H -+ (h, , h, , h3) (vector function)

RHl H2H3 --f l/(h,h,h,) (scalar function)

RHPHM + l/(h+h-) (vector function)

R2DQ + l/(2 * DQ) (vector). (44)

The mnemonic ‘R’ means reciprocal and signifies that division is avoided in the
interests of efficiency, and for similar reasons h,h,h, and hfh- are defined separately
instead of being constructed from h.

When using the leapfrog scheme [l] we find it useful to store the scale factors
and quantities that are constructed from them on a subsidiary mesh centered on

OPTIMIZATION OF SYMBOLIC ALGOL 523

the point Q, which may either contain 7 points if only one displacement &Aqi
occurs at a time (Fig. 4) or 27 if they occur together. Then, for example, RHPHM
becomes a real procedure which generates the code

RHPHMl [I], RHPHM%[I], RHPHM3[1] (45)

with I in the range (-3,3) as in Table IV.
The generated target module is therefore still independent of the coordinate

system although it does depend on the symmetry. To run the target program we
must reload the variables on the subsidiary mesh whenever they alter.
In spherical polars the scale factors are

h,= 1, ho = r, h, = r sin 8, (46)

FIG. 4. Subsidiary mesh used to store the scale factors.

so that we can minimize the amount of recalculation by assigning the variables
in order of q1 = q.-+ q2 = 8, q3 = r with the innermost scan over q1 , although
this is not necessarily the best choice on other grounds.

Some further improvements can be made if the coordinate system is specified
at generation time; for example h, might be automatically suppressed since it is
known to be unity.

6. THE PROBLEM PROGRAM AND THE GENERATOR PROGRAM

The problem program may be in any desired combination of languages, and by
no means all of it need be constructed automatically. One convenient approach
is to use Fortran for the more straightforward control sections of the program,
and for setting up core storage, and to use automatically generated assembly-code
modules to handle the solution of the partial-differential equations themselves as

524 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

well as any complexities due to boundary conditions. Changes to the physics can
then be made reliably and quickly, simply by generating a new module and linking
it to the remainder of the program. The automatically generated modules operate
on variables in the COMMON storage area, and communicate with the rest of the
program either via COMMON or through argument lists. To switch to a new type
of computer system, it is only necessary to alter the generator program so that it
outputs the appropriate assembly code.

An alternative approach is to use a combination of Algol 60 control program
and assembly-code modules. This approach has advantages if the local Algol
system is sufficiently powerful, but in most cases Fortran is at present to be
preferred.

One therefore starts by developing a strategy for the problem which takes into
account its modular structure, the layout of core and backing storage, the com-
munication between program modules, the choice of language and programming
style for each module, and so on. Those parts of for example, they should be made intelligible or easy to write and to

debug. Portability should also be planned right from the start, so that low-level
modules designed for one computer system can be rapidly replaced by those
written for another.

The Generator Program

An Assembler code replacement for an SA/I module of the prototype program
is constructed by incorporating the corresponding SAjII module into the generator
program which is then run (Fig. 5). We visualize a series of a related physical
problems, run either on one computer at a single laboratory or on a range of
different computers at several laboratories. If the generator program has been
constructed properly only a small part of the work has to be repeated for each new
situation. This saves time and makes it easier for one person to understand a
range of programs, since they share a family resemblance like members of related
biological species.

The generator program ought to be highly modular since there are a number of
requirements which may well need to be changed independently. Examples are

a. Computer System on which the code is generated.

i. Algol character representation.

ii. System output procedures.

b. Computer System for which the code is generated.
i. Character representation.

OPTIMIZATION OF SYMBOLIC ALGOL

ii. Language.

iii. System facilities.

c. Number of dimensions and coordinate system.

d. Mesh and storage layout

e. Symbols used for variables and constants.

f. Numerical methods and difference schemes.

PHYSICAL xx PROBLEM

/ I Express algerithm symboblly
- Plan progmm structure

Work out storage

525

FIG. 5. Programming strategy. The method of solution is first tried out by writing a prototype
program which is used to produce sets of test results. Modules of the prototype are next re-
constructed either by hand or with the SA/II generator program to make them more efficient.
Test results from the production program are then compared with those from the original tests
to make sure that the updating has been carried out correctly.

526 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

g. Physical equations.
h. Boundary conditions.
i. Physical coefficients (e.g., thermal conductivity).

Figure 6 shows the relation between the modules which have been developed so
far while Table V provides a list. In Section 7 we shall go through this list briefly,
indicating what the various modules do. A detailed description together with a
program listing and test runs will be published elsewhere [6].

Relation to Compilers and Macro-Generators

In mathematics or theoretical physics it is always possible for an author to devise
a new notation or extension to the accepted “language” and having defined it for the
reader, to use it throughout a paper or a course of research. This flexibility has been
largely unavailable in computing science, where it has been customary to use rather
standardized and limited languages such as Fortran, Algol or PL/I which are
constructed either by manufacturers or by international committees, and translated
by compilers which are expensive and time-consuming to write and to maintain.
The only degree of freedom left to the individual has been the ability to define
sets of library subroutines or procedures which in effect become additions to the
standard notation. There is no limit on the extensions which can be achieved
in this way but programs tend to run slowly if they make considerable use of
procedure calls, as in SA/I.

Macro-processors such as STAGE2 [4] enable any string of symbols to be given
a meaning. The user is free to define sets of macros which convert any string
into any other string and eventually, into the code of some high- or low-level
language whose efficiency depends solely on his own ingenuity. Thus the full
flexibility of mathematics is achieved provided that the character set is wide enough.

SA/II appears to lie somewhere in between. The formal structure of the input
string is constrained by the syntax of Algol so that there is usually an excessive
number of brackets as in Table III, but the manipulations that can be carried out
are quite general and it is remarkably easy for the individual user to make
alterations or additions to the “language” by changing the basic procedures of the
generator program. An SAjII generator program is also quite short; usually only
a few hundred Algol statements. Thus we have effectively at our disposal an ultra
high-level “language” compiler which is difference-scheme and problem dependent,
but is also easily changed by any user.

7. STRUCTURE OF THE GENERATOR PROGRAM

The current version divides logically into 6 main modules and 15 submodules
as shown in Table VI.

OPTIMIZATION OF SYMBOLIC ALGOL 527

VI.2
CONTROL

STATEMENTS

)a V6

INITlALl2AlUl

FIG. 6. Relation between the modules of the generator program. An arrow indicates that one
module makes use of procedures belonging to the other. Note that all output is channelled
through a single short module BASIC OUTPUT so that only this module has to be changed to
runlthe program on another computer.

I. BASIC OUTPUT

In transferring the generator program to a new computer system the iirst task is

528 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

TABLE VI

List of Generator Program Modules and Submodules

I. BASIC OUTPUT

II. CHARACTERS

III. MATHEMATICS A

III. 1. ARITHMETIC

111.2. ALGEBRA

IV, MATHEMATICS B

IV.1. VECTOR ANALYSIS

IV.2. SPACE AND TIME SCALES

V. OUTPUT ORGANIZATION

V. 1. TRANSLATION LOGIC

V.2. SIGNS, SPACES, NUMBERS AND FUNCTIONS

V.3. VARIABLE CLASSES

V.4. COMPONENTS AND DERIVATIVES

VS. COMMANDS AND REGISTER CHECKS

V.6. INITIALIZATION

VI. PROBLEM DEFINITION

VI.1. PHYSICAL CONSTANTS AND VARIABLES

VI.2. CONTROL STATEMENTS

VI.3. SOURCE STATEMENTS

to rewrite this module, which forms a link to the standard Algol output procedures
of the computer on which the generator is being run. (This need not of course be
the same as the computer for which the optimized code is being produced.) The
ICL KDF9 version occupies about 25 cards and it can usually be i-written for
another system in a few hours. The module defines the output channel and sets
up standard formats, and contains procedures which enable the output to be
manipulated in a straightforward system-independent way; e.g.,

BLANKS(N) Output N blank spaces

LINE Start a new line

OUTNUM(L, F, X) Output the value of an arithmetic expression X in
format F, length L

TEXT(L, S) Output a string S of length L?

The complete set is enough to generate code and comments in any language.

e The simpler procedure PRINT discussed in Section 2 did not contain the parameter L, which
helps the output procedures to organize the layout of the line.

OPTIMIZATION OF SYMBOLIC ALGOL 529

II. CHARACTERS

This also contains no submodules. It is made up of a dozen or so simple statement
procedures which enable one to refer to symbols like (, + ; = etc., by symbolic
names: OPENB, COMMA, PLUS, SEMICOLON, EQUALS. Although this
somewhat slows down code generation it makes the program much easier to read
and quicker to write, particularly in view of the awkward way in which string quotes
are often represented in Algol. Examples are

procedure EQUALS; TEXT(1, ‘=‘);

procedure CLOSEB ; TEXT(1, ‘)‘);

procedure OPENSB; TEXT(1, ‘[‘)

procedure MINUS; TEXT(1, ‘-‘); (47)

The first argument gives the lenth of the string, in this case 1.

III. MATHEMATICS A

The tist mathematics module comprises the submodules

ARITHMETIC

ALGEBRA.

The former of these contains a set of procedures

SUM(X, Y) MULT21(X, Y)

DIFF(X, Y) QUO’WL Y)
MULT(X, Y) SUM3(X, Y, Z)

which are all dealt with by a single fairly complex procedure TRIPOP (triple
operator) to be explained elsewhere [5], e.g.,

real procedure SUM3(X, Y, Z); real X, Y, Z; SUM3 := TRIPOP(5, X, Y, Z, 1);

(48)
The first argument of TRIPOP is an operation code, the second to fourth are the
operands, and the last two specify the first or second indexes (in the case of a second-
rank tensor). Procedure SUM3 is convenient when handling 3D scalar products and
divergences while MULT21 is used for handling tensor contractions. The others
deal with the arithmetic operations +, -, x , /.

The ALGEBRA submodule contains the rotation operators RI? and RM and
the vector-algebraic operators DOT and CROSS.

530 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

IV. MATHEMATICS B

In the simplest version the second mathematics module contains the two sub-
modules

1. CARTESIAN ANALYSIS LEAPFROG

2. SPACE AND TIME SCALES.

As its name implies, the first of these submodules depends on the mesh geometry
and on the difference schemes used (although not on the physical problem or on
the computer system). The procedures EP, EM, DEL, GRAD, DIV, CURL,
SAV, DELSQ are fairly direct translations of the SA/l versions already
published [I]. The other submodule deals with the constants dt, 2dS and (&)z
and can be also readily extended.

V. OUTPUT ORGANIZATION

This module depends on the output language. It may contain up to 6 submodules
of which number 5 is omitted in the Algol target version:

V.l. TRANSLATION LOGIC. Contains most of the logic needed to generate
the output code and to eliminate expressions which are identically zero, as well as
unnecessary brackets. It therefore deserves a more detailed description which is
given in Ref. [6].

V.2. SIGNS, SPACES NUMBERS AND FUNCTIONS. A number of standard
utilities are provided here, some of which depend on the output language or
format. For example a line overflow in Fortran requires that a continuation symbol
should be punched in column 6; overflow in assembly language is handled in a
different way while at the end of an Algol statement a semicolon is required. Signs,
integer and real numbers and elementary mathematical functions are also provided
for. The most important procedure is EQUATE which has been discussed in
Section 3.

V.3. VARIABLE CLASSES. Contains procedures which deal with constants,
scalars, vectors and tensors of which (32) is an example.

V.4. COMPONENTS AND DERIVATIVES. Contains the procedures COM-
PONENT and SHIFT which generate the code for referencing storage locations,
including any subsidiary calculations that are needed.

V.5. COMMANDS AND REGISTER CHECKS (IBM 360 Assembler code
only). Contains procedures REGISTER REGISTER, REGISTER STORAGE
which issue IBM 360 instruction mnemonics, and STORE IF OVERFLOW

OPTIMIZATION OF SYMBOLIC ALGOL 531

which determines whether or not the required register is already in use, if so
copying it into a reserved location in core store.

V.6. INITIALIZATION. Contains a procedure START which initializes
the variables of the generator program.

VI. PROBLEM DEFINITION

This module is provided by the user and consists of three submodules which
have been kept as simple and as close to the physics as possible:

1. PHYSICAL CONSTANTS AND VARIABLES

2. CONTROL STATEMENTS

3. SOURCE STATEMENTS.

Table III gives the source statements for TRINITY while (31) is an example of a
variable declaration. Typical initialization statements are

NDIM := 3; PI := PJ := PK := 8; (49)

(use an 8 x 8 x 8 mesh in 3 dimensions).

8. CONCLUDING REMARKS

A satisfactory solution to the slowness of programs written in Symbolic Algol I
has been found. Using a style known as Symbolic Algol II it has been possible to
translate finite-difference equations automatically into fully explicit codes in a
number of target languages. The best of these codes are fully competitive in speed
with hand-optimized Fortran and are fast enough to make the solution of time-
dependent magnetohydrodynamic equations in three space dimensions a feasible
proposition. In a recent exercise, a 3D plasma code in rotating spherical coordinates
was designed and written in about four days using the SA/II method. The same
translator program can be used for other systems of fluid equations and also for
problems in two dimensions. Although the advantages of the method are smaller
when applied to simpler problems, repetition of effort can still be avoided. More
importantly, the use of well-tested procedures reduces programming errors, in
particular those of a numerical nature which are often impossible to detect except
experimentally through a comparison with another calculation. Though at first
sight trivial this may prove to be one of the important attractions of the method.

The underlying principle is that instead of writing a problem program by hand,
one constructs a generator problem which writes it automatically. Because this
generator program is built up from prefabricated modules and is also highly
symbolic it can be developed and altered very quickly.

532 PETRAVIC, KUO-PETRAVIC, AND ROBERTS

In essence we are using Algol as a powerful macro-generator which is capable
of substituting one expression into another as well as performing many subsidiary
calculations. Because a value is associated with each substitution, extra information
can be carried along which allows some optimization to be done. A further
extension might be to relate this value to a generalized variable type (e.g., logical,
integer, real, complex, quaternion, matrix or whatever), so that any necessary
conversions can be carried out and the basic operators SUM, DIFF, MULT, etc.,
can be interpreted in the appropriate way in each case. This is close to the procedure
which is followed in mathematics which allows operators such as +, -, x to
be freely generalized to new classes of object. Other interesting possibilities are to
apply the SA/II technique to other kinds of program such as operating systems
and compilers, and to other types of computer such as the CDC STAR.

The features of Algol 60 that appear to be necessary or useful for this kind of
work are [8,9]

(a) Call by name. Needed for the symbolic substitution of one expression
into another.

(b) Parameterless typedprocedures. Just as in mathematics, a function need
have no explicitly indicated arguments. (Fortran does not allow this.)

(c) English-language ident$ers of any length, with blanks ignored. Can be
used to make programs more intelligible and to avoid bulky comments.

(d) Elimination of the unnecessary word ‘CALL’.

(e) Ability to have several statements on one line. Both (d) and (e) make
programs more concise and attractive.

(f) No overhead on procedure declarations. Often these declarations are
only one card long, and one line in the compiler listing, instead of several pages
as in Fortran.

(g) Block structure for variable scopes. Global variables can be passed into
a procedure implicitly without the need for a bulky COMMON deck or argument
lists.

(h) Recursion. Typed procedures can be substituted into one another
without restriction as required by the mathematical physics.

(i) Side efsects. Available also in other languages, but mentioned here as
being crucial to the whole method.

ACKNOWLEDGMENTS

The early planning of SA/II was carried out in collaboration with Dr. J. P. Boris. We should
like to thank Dr. F. Hertweck and his colleagues at the Institut fiir Plasmaphysik, Garching,

OPTIMIZATION OF SYMBOLIC ALGOL 533

Federal Republic of Germany, for making available to us the excellent facilities of the IBM 360/91
Computing Centre at the Institute. We should also like to thank Mr. R. S. Peckover for many
discussions on Symbolic Algol, and Dr. N. K. Winsor for providing an improved compiler.

&WRENCE?S

1. K. V. ROBERTS AND J. P. BORIS, The solution of partial differential equations using a symbolic
style of Algol, J. Comput. Phys. 8 (1971), 83.

2. K. V. ROBERTS AND R. S. PECKOVER, Symbolic programming for plasma physicists, in “Proceed-
ings of the Fourth Conference on Numerical Simulation of Plasmas,” U.S. Naval Research
Laboratory, Washington D.C., November 1970, p. 165. Office of Naval Research, Department
of the Navy, July 1971.

3. G. KUO-PETRAVIC, M. PETRAVIC, AND K. V. ROBERTS, The translation of Symbolic Algol I to
Symbolic Algol II by the STAGE 2 Macro-Processor, Culham Laboratory preprint CLM-P
275.

4. W. M. WAITE, The mobile programming system STAGE 2, Comm. ACM 13 (1970), 415.
5. G. KUO-PETRAVIC, M. PETRAVIC, AND K. V. ROBERTS, The translation of Symbolic Algol I

to Symbolic Algol II using Algol60, to be submitted for publication in Comput. Phys. Commun.
6. M. PETRAVIC, G. KU~PETRAVIC, AND K. V. ROBERTS, Automatic optimization of Symbolic

Algol programs. II. Code generation, to be published.
7. M. PETRAVIC, G. KUO-PETRAVIC, AND K. V. ROBERTS, The Symbolic Algol II generator

program, to be submitted for publication in Comput. Phys. Commun.
8. B. HIGMAN, “A Comparative Study of Programming Languages,” McDonald/Elsevier Com-

puter Monographs (1967).
9. R. BAUMANN, M. FELICIANO, F. L. BAUER, AND K. SAMIJELSON, “Introduction to Algol,”

Prentice-Hall, Englewood Cliffs, NJ., 1964.

